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nonlinear lumped-parameter model of a piezoelectric stack

ctuator has been developed to describe actuator behavior for

purposes of control system analysis and design, and, in particular,
for microrobotic applications requiring accurate position and/or

force control. In formulating this model, the authors propose a

generalized Maxwell resistive capacitor as a lumped-parameter

causal representation of rate-independent hysteresis. Model for-

mulation is validated by comparing results of numerical simula-

tions to experimental data. Validation is followed by a discussion

of model implications for purposes of actuator control.

Actuation for Interactive Micromanipulation
Micromanipulator applications, and in particular dynami-

cally interactive micromanipulation, require control actuators

that can provide both accurate position tracking performance in

addition to robustly stable force control [2, 7, 13]. These objec-

fives are significantly compromised by the presence of backlash

and Coulomb friction in the control plant [4, 14, 16], the effects

of which are exaggerated at small scales [5]. Since piezoelectric

stack actuators are monolithic and have no sliding or rolling

parts, they exhibit no significant mechanical stiction or backlash.

Additionally, a typical lead-zirconate-titanate (PZT) piezoelec-

tric stack actuator can perform step movements with a resolution

on the order of a nanometer, has a bandwidth on the order of a ki-

lohertz, and can provide mechanical power on the order of sev-

eral watts. Consequently, piezoelectric ceramics are well suited

for use as precision microactuators for micropositioning devices,

and due to the absence of Coulomb friction and backlash, are es-

pecially well suited for use in dynamically interactive microma-

nipulation applications.
The use of PZT stack actuators for accurate and stable control

of manipulator position and/or force is greatly facilitated by

model-based control system analysis and design. The purpose of

the model presented herein is to map the relationship between

voltage and charge at the electrical port of the PZT to force and

displacement at the mechanical port in a lumped parameter form

that can be represented by a set o f ordinary differential equations.
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This type of formulation provides both general insight into PZT

behavior as well as a specific causal mathematical representation

for purposes of model-based control system analysis and design.

The Anatomy of a Piezoelectric Stack Actuator
Piezoelectric ceramics transduce energy between the electri-

cal and mechanical domains. Application of an electric field

across the ceramic creates a mechanical strain, and in a similar

manner, application of a mechanical stress on the ceramic in-

duces an electrical charge. The fundamental component of a pie-

zoelectric stack actuator is a wafer of piezoelectric material

sandwiched between two electrodes. Prior to fabrication, the wa-

fer is polarized uniaxially along its thickness, and thus exhibits

significant piezoelectric effect in this direction only. A typical

piezoelectric stack actuator is formed by assembling several of
the wafer elements in series mechanically and connecting the

electrodes so that the wafers are in parallel electrically, as illus-

trated in Fig. 1. The nominal quasi-static behavior of a piezoelec-

tric stack actuator is a steady-state output displacement that is

monotonically related to the voltage input. ": :
- ,Z; .;

Existing Descriptions of Piezoelectric Behavior i_
The most widely recognized description of piezoelectric=', ce-_

ramic behavior was published by a standards committee of the

IEEE Ultrasonics, Ferroelectrics, and Frequency Control Soci-

ety, originally in 1966 and most recently revised in 1987 [15].

This committee formulated linearized constitutive relations de-

scribing piezoelectric continua which form the basis for the

model of piezoelectric behavior that is presently in general u_se.

The linearized constitutive relations are typically represented in

a compressed matrix notation as follows:

(1)

(2)

where S represents the strain tensor, s t_ is the elastic compliance

matrix when subjected to a constant electrical field. T represents

the stress tensor, d is a matrix of piezoelectric material constants,

E is the electric field vector• D the electric displacement vector,

and _r the permittivity measured at a constant stress. The com-

pressed notation eliminates redundant terms by representing the

symmetric stress and strain tensors with single column vectors

that incorporate elements representing both the diagonal itnd

off-diagonal tensor terms. These equations essentially state that

the material strain and electrical displacement (charge per unit

area) exhibited by a piezoelectric ceramic are both linearly af-

fected by the mechanical stress and electrical field to which the
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Fig. 1. Illustration of a piezoelectric stack actuator.

ceramic is subjected. Aside from the awkward notation, these

linearized constitutive relations fail to explicitly describe the

nonlinearities that are present in all piezoelectric ceramics. Ad-

ditionally, the derivation assumes a purely conservative energy

field, and thus fails to describe the dissipative behavioral aspects

of the ceramic.

Several authors have utilized these linearized constitutive re-

lations to derive a piezoelectric actuator model [6, 10, 12]. Given
the aforementioned limitations of the IEEE model, however, the

resulting descriptions are too approximate for use in developing

accurate position or force control. Leigh and Zimmerman took

an iterative algorithmic approach to describing the nonlinear be-

havior of piezoelectric ceramics [11]. Though capable of de-

scribing the hysteretic behavior of piezoelectfics, this approach
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is neither real-time nor energy-based, and thus provides little

physical insight into actuator behavior and has limited use with

respect to model-based control system design. Jouaneh and Tian

incorporated a time-dependent nonlinear state variable, a

method originally developed by Bouc for a structures applica-

tion, to describe the nonlinear voltage/displacement behavior of

piezoelectric actuators [I, 8]. The model of Jouaneh and Tian is

nicely posed, but as an electromechanical model is incomplete,

since it represents both the electrical and mechanical ports of the

FZT as signal ports (i.e., the model implicitly assumes no dy-

namic interaction with the environment). Utilizing piezoelectric

ceramic as an actuator explicitly requires that it perform work on

its environment. An accurate behavioral description must there-

fore characterize the input and output ports of the FZT as power

ports, and must therefore describe relationships involving me-

chanical force and electrical charge as well as electrical voltage

and mechanical displacement.

The model presented herein offers a complete behavioral de-

scription that is based neither on the IEEE constitutive relations,

nor on algorithm, but rather is formulated by describing the ob-

served static and dynamic behavior of a piezoelectric actuator

with a lumped-parameter energy-based representation.

Model Formulation

Since piezoceramic is a known dielectric, one would expect a

PZT stack actuator to exhibit capacitive behavior. The electrical

behavior of the actuator, however, is significantly more complex.

For purposes of controller design, one of the most inconvenient

aspects of the actuator behavior is the rate-independent hystere-

sis exhibited between voltage and displacement as well as be-

tween force and displacement, as shown in Fig. 2. ff not

specifically addressed, this type of behavior can cause closed-

loop limit cycling and possibly instability. Experimental obser-

vation indicates that the rate-independent hysteresis exhibited in

Fig. 2 is not present between the endpoint displacement of the
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Fig. 2. Measured quasi-staticrelationships between applied voltage and endpoint displacement and between appliedforce atul endpoint

displacement.
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Fig. 3. Column (a): Measured charge input versus endpoint displacement output for PZT stack actuator for I00 and 1000 Hz sinusoidal
inputs. Column (b ): Frequency response of endpoint displacement output to charge input. The marks represent measured data points and the

continuous lines represent a linear second-order system.

PZT stack actuator and the net electrical charge delivered to the
actuator. Additionally, dynamic observation indicates that end-

point displacement as a function of electrical charge is well ap-
proximated by second-order linear dynamics, as shown in the
measured data of Fig. 3.

The quasi-static force-displacement relationship of a PZT
stack actuator is shown in Fig. 4. As illustrated in the figure,

rate-independent hysteresis is observed only when the electrode

leads areshorted. When the leads are open and current cannot

flow through the ceramic, the actuator exhibitsno statichyste_..-
sis.This evidence, along with the absence of stadc hysteresis'o¢:

tween displacement and charge illustrated by Fig. 3(a), suggests
that the rate-independent hysteresis lies solely in the electric_il
domain between the applied actuator voltage and resulting

charge.
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Fig. 4. Quasi-static force displacement relationship for a PZT stack _ 0

actuator with open leads (dashed line) and with shorted leads (solid -0.2

line).
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Modeling Hysteresis -0.8 ...........................i .................i ............. i .................i.......Generalized hysteretic behavior is characterized by two vari-
ables related by a non-single-valued function, as illustrated by
the voltage/displacement relationship in Fig. 2. Examples of -t -0.5 0 0.s 1
such behavior include the relationship between the stress and Displacement

strain in the elastic-plastic deformation of a material, and the re- Fig. 5. Force-displacement behavior of a single elasto-slide element
lationship between magnetic field strength and flux density in a
hard magnetic material. In these and in most physical systems,

this hysteretic behavior is the result of energy storage that is fun-
damentally coupled to rate-independent dissipation. Mechani-
cally, such behavior could be modeled by the combination of an

ideal spring, which represents pure energy-storage, coupled to a
pure Coulomb friction element, which represents rate-
independent dissipation. This analogy is the basis for describing
the static hysteresis exhibited by the piezoelectric actuator. Fig. 5
illustrates a single elasto-slide element which consists of a mass-

less linear spring and a massless block that is subjected to Cou-
lomb friction. The constitutive behavior of this element can be

described by:

F _

i(x -x_) if ik(x --Xh_ < f

sgn(.'_) and x, = x- J--sgn(x) elsef
/¢ (3)

where x is the input displacement, F is the output force, k is the

stiffness of the spring.f = gN is the breakaway friction force of
the block, and xb is the position of the block. For a displacement
input of sufficient amplitude, the relationship between the ap-
plied force and the endpoint displacement will exhibit rudimen-
tary hystcrctic behavior. If several of these elasto-slide elements
arc put in parallel, each subjected to an incrementally larger nor-
m:d force (i.e., each has an incrementally larger breakaway
fl_rce), the simple relationship of Fig. 5 becomes a piecewise lin-

consisting of a massless linear spring and a massless block

subjected to Coulomb friction.

ear approximation of rate-independent hysteresis, as illustrated
in Fig. 6. This construction was initially formulated by the
mathematician and physicist James C. Maxwell in the mid-.
1800s, and in the limit as the number of elasto-slide elements be-
comes infinite, the model is referred to as Generalized Maxwell

Slip [9]. The constitutive behavior of the system in Fig. 6 con-
raining n elasto-slide elements can be described by:

r,: [zs ¢O:rid,, oZse
(4)

n

r=Zr,
-_ (5)

where x is the input displacement, F is the output force, and Ft, kl,

fi, andx_ are the output force, spring stiffness, breakaway force,
and block position, respectively, of the ith elasto-slide element.

The Maxwell model of rate-independent hysteresis can be pa-
rameterized directly from a piecewise linear fit of the rising
curve of the hysteresis from a relaxed state, as illustrated in Fig.
7. Note that complete parameterization of the entire hysteretic
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Fig. 6. Force-displacement behavior of several elasto-slide elements
in parallel, each subjected to increasing normal forces.

behavior requires fitting only the initial rising curve. A rising
curve fit by n linear segments will require n elasto-slide ele-
ments, and will thus require 2n parameters. For a curve fit by n
linear segments, the slope of the jth segment (the localized stiff-

ness) is given by:

II

,.j (6)

where k_represents the stiffness of the i thspring in the Maxwell
model. This can be expressed in a matrix form as:

s=A k (7)

v;

where sis an x lvector of the .segment slopes, A is an n x n upper

triangular matrix of ones, and k is an n x I vector of Maxwell

4 _,! " .JuntI_7 :....

Piecewise Approximation of Hysteresis

,o
/

Displacement

Fig. 7. Parameterizing the Maxwell model of rate-independent

hysteresis. Complete parameterization requires piecewise linear fit

of the rising curve of the hysteresis, taken from an initially relaxed

state. _'
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model spring stiffness, as illustrated in Fig. 8. Rearranging gives

an explicit expression for the spring stiffnesses: .:,_ :

k = A"S. ._(8)

The location of each respective segment, defined by xj in the fiv e

segment fit of Fig. 7, can be expressed as: ._;,',,"

f,
x_ = _ (9)

13
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Fig. 9. Schematic representation of the PZT stack actuator model.
The capacitor and resistor contained within the MRC element are
both nonlinear elements.

wheref i is the breakaway friction force of the jth block in the
Maxwell model. Rearranging gives an explicit expression for the
breakaway forces:

f=Kx (10)

where fis an n x 1vector of the breakaway forces, K is an n x n di-

agonal matrix of the spring stiffnesses, and x is an n x I vector of
the segment locations as shown in Fig. 7. Note that since the
Maxwell model is a piecewise linear approximation, increasing
the number of blocks will increase the model accuracy. The
number of elasto-slide elements, however, has no bearing on the
order of the model, since the blocks are all massless and the

springs are in parallel.
Though ostensibly a mechanical formulation, the energy-

based constitutive relations of the Maxwell slip model are not
domain-specific, and can therefore represent any rate-
independent hysteretic relationship between a generalized force
and generalized displacement in a lumped parameter causal
form. Consequently, in addition to force and displacement, the
generalized Maxwell model can represent rate-independent hys-
teresis between voltage and charge, temperature and entropy,
and magnetomotive force and magnetic flux.

The PZT stack actuator model resulting from the aforemen-
tioned observations is shown in schematic form in Fig. 9. The
generalized Maxwell resistive capacitance, which is represented
by the MRC element, resides in the electrical domain and there-
fore relates the element's electrical voltage to charge. The PZT
model has two ports of interaction, a voltage-current port on the
electrical side and a force-velocity port on the mechanical side.
With respect to the mechanical side of the transformer, since the
actuator model is concerned only with endpoint displacement in
a frequency band within the first mechanical mode of vibration,
the piezoelectric stack is assumed to have a lumped mass and a
linear material stiffness and damping. The behavior of the actua-
tor is therefore described by:

q = Tx + Cv, (11)

v,=v.+v (12)

?4

v, = rare(q) (13)

F,= Tv (14)

m//+ Ok+ _ = F, + £,, (15)

where q is the total charge in the ceramic, T is the electrome-
chanical transformer ratio, x is the stack endpoint displacement,
C is the linear capacitance in parallel with the transformer, vt is
the back-emf from the mechanical side, vi,, is the actuator input
voltage, v,r is the voltage across the Maxwell capacitor (which as
indicated by Equation (13) is a function of q), Ft is the transduced
force from the electrical domain, m, b, and k are the mass, damp-
ing, and stiffness of the ceramic, and F_t is the force imposed
from the external mechanical load. The function of equation (13)
relates the voltage across the MRC element to the charge in the
ceramic as follows:

Table 1. Model Parameters Utilized in Simulation of the NEC
Model #AE0505D16 Piezoelectric Actuator

Model Parameter Symbol Numerical Value

Mass m 0.00375 kg

Stiffness k 6 x 10 6 Nlm

Damping b 150 N-s/m

Linear Capacitance C 1.2 x 10.6 F

Transformer Ratio T 10 C/m

v_sgn(i) and q_ = q - C, , sgn() else

,k

(16)

where q is the charge in the ceramic, v,r is the voltage across the
Maxwell capacitor, and all other variables are the electrical ana-
logs of those given in Equations (4) and (5). :"

Simulation and Experiment
The model was parameterized for a commercially available

piezoelectric stack actuator (NEC model #AE0505D 16). This
actuator operates at input voltages between zero and 150 volts (in
the direction of wafer polarization), which corresponds to an
endpoint displacement range of approximately 20 microns.
Upon measuring the mass m of the PZT, the mechanical stiffness
k and damping b can be determined by observation of the
charge-displacement dynamics that are shown in Fig. 3. Meas:
urement of the open-lead stiffness and knowledge of the DC gain
between charge and displacement are sufficient to determine the

linear electrical capacitance C and the transformer ratio Z The

rl)"I
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Fig. 10. Measured (solid line) and simulated (dashed line) endpoint displacement response of the

PZT to a 90 volt 100 Hz triangle-wave input. The difference between the measured and simulated

data is die,cult to discern.

model parameters utilized for the simulations that follow are

given in Table I.

The Maxwell capacitor parameters, as given in Table 2, were

determined by piecewise linear fit of the measured voltage ver-

sus charge data. More specifically, the electrical parameters of

Equations (16) and (17), Ct and vt, were found using the meth-

ods of Equations (6) through (10), where each stiffness of

Equation (8) is rcphtccd with the

inverse of a capacitance and each

breakaway force of Equation (10)

is replaced with an analogous

saturation voltage:

I

c, (18)

_,,=f. (]9)

The parameters defining the

Maxwell capacitor for the simula-

tions presented herein are given in

Table 2. As indicated by the table,

these simulations were run with ten

elasto-slide elements in the gener-

alized Maxwell resistive capacitor.

As previously stated, the Maxwell

model is essentially a piecewise lin-

ear approximation of rate-

independent hysteresis where the

number of elasto-slide elements

corresponds to the number of linear

segments. Increasing the number of

blocks therefore increases the

model accuracy. The number of

blocks required to accurately

model a given hysteresis thus de-

pends on the curvature of the hys-

teresis and the required degree of

model accuracy. A real-time apl_li-

cation may be better served by

fewer elements; since the number

of elements does not affect the or-

der of the model, however, the in-

creased computational overhead

from added elements is minimal.._,

Fig. 10 shows the measured _id

simulated endpoint displacement

response of the modeled actuator'to

a 30, 60, and 90 volt 100 Hz

triangle-wave voltage input inthe

absence of an external mechanical

load. As indicated by the plots, the

model faithfully represents the

voltage input to endpoint displace-

ment output behavior of the PZT

actuator. Note in the plots that the

displacement output evinces distor-

tion on both the rising and falling

slopes and maintains an

amplitude-dependent offset. Fur-

ther observation indicates that this is not typical dynamic dis-'

tortion. There is no discernible phase lag between the input and

output, as indicated by the relative positions of the waveform

peaks, and there are no significant lihcring cflL'cts, evidenced

by the fact that the peaks arc neither rounded nt)l' otherwise dis-

torted. These observations indicate the existence of a rate-

75



Table 2. Generalized Maxwell Capacitor
Parameters Utilized in the Model*

Element Stiffness Break Force

i ki (I/C,) fi (vi)

I 2.0 0.2

2 0.6 0.3

3 0.3 0.3

4 0.26 2.6

5 0.06 0.9

6 0.I 2.0

7 0.05 1.5

8 0,03 1.2

9 0.l 7.0

10 0.5 80.0

* The stiffnesses and breakaway forces correspond with the me-

chanical schematic of Fig. 6.

independent hysteresis. This hysteretic behavior is clearly dis-

played in Fig. I 1, which shows both the measured and simulated

data of Fig. 10 plotted as voltage input versus displacement out-

put. Any dynamic system will exhibit an ellipsoid-shaped input-

output hysteresis, provided the input is of sufficient frequency to

create discernible phase lag in the output. This type of dynamic

hysteresis, characterized by a smooth curve relating the output to

input, is a result of phase lag between the input and output (such

as that shown in Fig. 3). The rate-independent hysteresis of Fig.

10, however, is distinguished from a dynamic hysteresis by the

distinct discontinuities exhibited at both extremes. Model accu-

racy is additionally demonstrated by the data of Fig. 12, which

shows the measured and simulated response of the actuator to a

linearly decaying 100-hertz sinusoidal voltage input. ,

Fig. 13 shows the simulated displacement response to a I0 Hz

sinusoidal external force for cases with the electrical leads open

and shorted. The simulated behavior accurately reflects the qua-

sistatic measured behavior illustrated by Fig. 4. In addition to pro-

viding a structure for numerical simulation, the lumped-parameter

model also provides insight into how the electrical properties of

the PZT reflect into the mechanical domain. As shown by the

measured and simulated data of Figs. 4 and 13, respectively, the

PZT actuator exhibits significantly greater stiffness when the

leads are open than when the leads are shorted. This change in

stiffness can be demonstrated by observing that both the linear and

the Maxwell capacitors in the electrical domain reflect as stiff-
ncsses in the mechanical domain. This is similar to the electrical

resistance of a DC motor appearing as mechanical damping when

the motor leads are shorted. Linearizing the Maxwell capacitor

and deriving expressions for mechanical stiffness in both the open

anti shorted-lead configurations yields

T 2

k,,=k+--
C (20)
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Fig. 13. Simulated PZT behavior showing force versus endpoint

displacement for a 10 Hz sinusoidal _ternal force input for cases

with the electrical leads open (dashed line) and shorted (solid line).

Co R1

C1

Fig. 14.1EEE lumped parameter circuit model of PZT near isolated

resonance.

k,=k+.--
T 2

C, + C (21)

where k,, is the open lead stiffness, k, is the shorted lead stiffness,

k is the mechanical domain stiffness, C is the linear electrical ca-

pacitance, T is the transformer ratio, and C,,, is the linearized

Maxwell capacitor. The inclusion of C,,, in the second term of the

latter expression clearly indicates the decreased shorted lead

stiffness,

Comments on the IEEE Resonance Model

In addition to formulating the previously described linearized

constitutive relations for piezoelectric continua, the IEEE stan-

dards publication [ 15] also offers a circuit representation of a

PZT near an isolated resonance, shown in Fig. 14. The standards

publication does not relate the resonance circuit to the constitu-

tive relations and does not offer any explanation for the presence

of inductive or resistive effects in what is, according to the con-

stitutive equations, a multi-port capacitive medium• The model

derived herein elucidates the structure of the resonance model

and accounts for the inductive and resistive elements• The induc-

tor. resistor, and capacitor (Lt, Rj. and Cj. respectively) in the

IEEE resonance circuit of Fig. 14 are not fundamentally electri-

cal behaviors, but rather are the apparent behavior of the first

mode of mechanical vibration, as seen through the electrical

port. Reflecting the mechanical elements of the lumped parame-

ter model to the electrical side gives circuit element values of

m

/_ = T'; (23)

b
& =

(24)1-

T z

C 1 _ --

k (25)

Co= C. (26)

This would indicate that driving a typical mnss-spdng-

damper external load would effectively increase Lt and Rl, de-

crease Ct, and leave Co unaffected..

Implications for Actuator Control
Several analogies can be drawn between control ofa DC pe_-

•manent magnet motor and control ofa I:VZT stack actuator. F ir,.s._.
controlfing charge into a PZT actuator is in many ways an/do-:

gous to controlling current into a DC motor. The relationship be-
tween input current and output displacement of a DC motor can

be characterized by linear second-order dynamics (one pole

serving as a pure integrator). In a similar manner, the relationship

between input charge and output displacement of a PZT stack

can also be characterized by linear second-order dynamics. Sec-

ond, just as the output shaft torque is direcdy proportional to in-

put current in a DC motor when the shaft is locked, the output

force of a PZT stack is similarly proportional to input charge

when the stack is locked. Continuing this analogy, controlling a

DC motor with voltage as input introduces the first-.order dynam-

ics of the stator coil inductance and resistance into the system. In

a similar manner, controlling a PZT stack with voltage as input

introduces the first-order dynamics of the Maxwell resistive c_.-

pacitor into the system, which unlike the inductor/resistor dy-

namics of the DC motor, are nonlinear.

Summary and Conclusions
The model presented accurately represents the behavior of a

piezoelectric stack actuator in a lumped-parameter real-time rep-

•i;L
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resentation, and can therefore be utilized for purposes of model-
based control analysis and design. The static hysteresis evinced
by the PZT actuator was identified as energy storage coupled to
rate-independent dissipation, and was faithfully represented by a
generalized elasto-slip model. Despite the presence of this non-
linearity, the relationship between charge delivered to the PZT
and endpoint displacement of the stack was observed to ha_c

simple second-order linear characteristics. Design and analysis
of closed-loop actuator control can therefore be achieved either

by incorporating nonlinear techniques with actuator voltage as
command, or by utilizing linear techniques with actuator charge
as command.

Acknowledgment
This work was supported by NASA Grant No. NAGW-4723

and by the Vanderbilt University Research Council. The authors
gratefully acknowledge this support.

References
[1] R. Bouc, "Forced Vibration of Mechanical Systems with Hysteresis,"

Proceedings of the Fourth Conference on Nonlinear Oscillation, Prague,

Czechoslovakia, 1967.

[2] J.E. Colgate and N. Hogan, "Robust Control of Dynamically Interacting

Systems;" International Journal of ControL 48(1):65-88. 1988.

[3] R. Comstock, "Charge Control of Piezoelectric Actuators to Reduce Hys-

teresis Effects." United States Patent #4.263,527. Assignee: The Charles

Stark Draper Laboratory, Cambridge, MA, 1981.

[4] A. Gogoussis and M. Donath, "Determining the Effects of Coulomb Fric-

tion on the Dynamics of Bearings and Transmissions in Robot Mechanisms,"

ASME Journal of Mechanical Design, vol. 115, no. 2, pp. 231-240, 1993.

[5] M. Goldfarb and N. Celanovic, "Minimum Surface Effect Microgripper

Design for Force-Reflective Telemanipulation of a Microscopic Environ-

ment," Proceedings of the ASME International Mechanical Engineering

Conference and Exposition, November 1996. - .

[6] N.W. Hagood, W.H. Chung, and A. yon Flotow, "ModellIng of Piezoelec-

tric Actuator Dynamics for Active Structural Control," Journal of Intelligent

Materials, Systems. and Structures. vol. 1, pp. 327-354, July 1990.

[7] N. Hogan, "Impedance Control: An Approach to Manipulation" ASME

Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 1-24,

1985.

[8] M. Jouaneh and H. 'l'_an, "Accuracy Enhancement of a Piezoelectric Ac-

tuator with Hysteresis." ASME JAPAN�USA Symposium on Flexible Automa-

tion, vol. I, pp. 31-637, 1992.

[9] B.J. Lazan. Damping of Materials and Members in Structural Mechanics,

Pergamon Press. London. 1968.

[1()1 F I.ce. T.J. Mt)()n, and G.Y. Masada, "Extended Bond Graph Reticola-

fiL)n _)1 Piezoelectric Ct)ntinu:l.'" ASME Journal of Dynami(" System.r. Meas-

,rrmr,nt. and C, ntrol, vol. 117. no. I. March. pp. I-7. 1995.

I I t I T I). Lcigh and D.C. Zimmerman. "An hnplicit Method for the Nonlin-

,.':_r M,dclling and Simulation of Piezoceramic Actuatc, rs Displaying Hys-

teresis." ASME Smart Structures and Materials, AD-w_I. 24. pp. 57-63,

I _)t) I

[121 C. Liang. E Sun, and C.A. Rogers. "Coupled Electro-Mechanical

Analysis of Piezoelectric Ceramic Actuator-Driven Systems: Determination

t_l the Actuator Power Consumption and System Energy Transfer," Proceed-

ine._ ,_1 the SPIE Smart Structures and Intelligent Systems. vol. 1917, pp.

_S_-_)8. 1993.

I 131 M. Raibert and J. Craig. "'Hybrid Position/Force Control of Manipula-

tom." ASME Journal of Dynamic Systems. Measurement. and Control, vol.

t03, pp. 126-133. 1981.

1141 H. Schempt and D.R. Yoerger, "'Study of Dominant Performance Char-

acteristics in Robot Transmissions," ASME Journal of Mechanical Design,

vol. 115 num. 3, pp. 472-482, 1993.

[ 15 ] Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Fre-

quency Control Society, An American National Standard: IEEE Standard on

Piezoelecrrici_., The Institute of Electrical and Electronics Engineers,

ANSI/IEEE Std. 176-1987, New York. 1987. ' ;

[161 W. Townsend and J.K. Salisbury, "'The Effect of Coulomb Friction and

Stiction on Force Control." in Proceedings of the IEEE Conference on Robot-

ics and Automation, pp. 883-889, April 1987.

Michael Goldfarb received the B.S. degree in me-

chanical engineering from the University of Arizona in

1988, and the S.M. and Ph.D. degrees in mechanical en-

gineering from the Massachusetts Instituteof Technol-

ogy in 1992 and 1994, respectively. He is ca.u'rently

Assistant Professor of Mechanical Engineering at Van-

derbilt University. His research interests include de-

sign, modeling, and control of electromechanical

systems, development of microrobotic and telerobodc

systems, hybrid position/force control of robotic manipulators, and simu-

lated mechanical environments. ;

Nikola Celanovi¢ received the B.S. degree in industrial

electronics and telecommunications from the Uni:_"-"

sity of Novi Sad in 1994 and the M.S. degree in'_

chanical engioeeuring from Vanderbilt University in

1996. His research interests include robotics, conlrol

theory, and power electronics. He is currently pursuing

a doctoral degree in power electronics at Virginia P.oly._

technic University and State School. .:

June 1997 19


